Theranostic Liposome–Nanoparticle Hybrids for Drug Delivery and Bioimaging
نویسندگان
چکیده
Advanced theranostic nanomedicine is a multifunctional approach which combines the diagnosis and effective therapy of diseased tissues. Here, we investigated the preparation, characterization and in vitro evaluation of theranostic liposomes. As is known, liposome-quantum dot (L-QD) hybrid vesicles are promising nanoconstructs for cell imaging and liposomal-topotecan (L-TPT) enhances the efficiency of TPT by providing protection against systemic clearance and allowing extended time for it to accumulate in tumors. In the present study, hydrophobic CdSe/ZnS QD and TPT were located in the bilayer membrane and inner core of liposomes, respectively. Dynamic light scattering (DLS), zeta potential (ζ) measurements and fluorescence/absorption spectroscopy were performed to determine the vesicle size, charge and spectroscopic properties of the liposomes. Moreover, drug release was studied under neutral and acidic pH conditions. Fluorescence microscopy and flow cytometry analysis were used to examine the cellular uptake and intracellular distribution of the TPT-loaded L-QD formulation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to investigate the in vitro cytotoxicity of the formulations on HeLa cells. According to the results, the TPT-loaded L-QD hybrid has adequate physicochemical properties and is a promising multifunctional delivery vehicle which is capable of a simultaneous co-delivery of therapeutic and diagnostic agents.
منابع مشابه
Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release.
The engineering of responsive multifunctional delivery systems that combine therapeutic and diagnostic (theranostic) capabilities holds great promise and interest. We describe the design of thermosensitive liposome-nanoparticle (NP) hybrids that can modulate drug release in response to external heating stimulus. These hybrid systems were successfully engineered by the incorporation of gold, sil...
متن کاملMRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies.
Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-...
متن کاملVisualization of drug delivery processes using AIEgens
Drug delivery systems (DDSs) have been extensively studied as carriers to deliver small molecule chemo-drugs to tumors for cancer therapy. The therapeutic efficiency of chemo-drugs is crucially dependent on the effective drug concentrations in tumors and cancer cells. Novel DDSs that can simultaneously unveil drug distribution, drug release/activation behaviors and offer early evaluation of the...
متن کاملGold nanoparticles as cancer theranostic agents
The application of nanotechnology in medicine involves using nanomaterials to develop novel therapeutic and diagnostic modalities. Given the unique physiochemical and optical properties of gold nanoparticle (GNP) such as good biocompatibility, nontoxic nature, surface properties and comparative stability, it has been widely studied in medicine, especially as a cancer theranostic agent. Th...
متن کاملPhotoacoustic Drug Delivery
Photoacoustic (PA) technology holds great potential in clinical translation as a new non-invasive bioimaging modality. In contrast to conventional optical imaging, PA imaging (PAI) enables higher resolution imaging with deeper imaging depth. Besides applications for diagnosis, PA has also been extended to theranostic applications. The guidance of PAI facilitates remotely controlled drug deliver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017